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Abstract
We calculate the probability distribution of the overlap between a spin glass
and a copy of itself in which the bonds are randomly perturbed in varying
degrees. The overlap distribution is shown to go to a δ distribution in the
thermodynamic limit for arbitrarily small perturbations (bond chaos) and we
obtain the scaling behaviour of the distribution with system size N in the high-
and low-temperature phases and exactly at the critical temperature. The results
are relevant for the free energy fluctuations in the Sherrington–Kirkpatrick
model [1].

PACS numbers: 75.50.Lk, 75.10.Nr

1. Introduction

Chaos is one of the fascinating properties of spin glasses. Whenever a spin glass is subjected
to a change (e.g. a change in temperature or in the coupling constants), the equilibrium state
of the system changes completely (in the thermodynamic limit), no matter how small the
change is. This behaviour has been first observed in hierarchical models [2] and was then
suggested for finite-dimensional spin glasses [3] within the droplet theory. Chaos is however
not restricted to replica symmetric droplet-like scenarios: in [4] it was shown that temperature
chaos exists in the Sherrington–Kirkpatrick model [5] which breaks the replica symmetry. In
this paper we show that bond chaos also exists in the Sherrington–Kirkpatrick model. This
is not surprising since bond chaos is usually a stronger effect than temperature chaos [6].
However, it has recently been found that an intricate connection exists between bond chaos
and the sample-to-sample fluctuations of the free energy [1, 7], which is a long-standing
problem in spin glass and extreme value theory. It is therefore necessary to calculate bond
chaos in order to make progress on fluctuations, and in this paper we will present the details
of the calculation which was only sketched in [1].

Temperature chaos has been simulated extensively in the literature, see e.g. [8] and
references therein. Bond chaos has not been simulated quite so much but nevertheless
for many different models, including the Edwards–Anderson model in dimensions 1–4
[6, 8–12], on the hierarchical Berker lattice [13, 14], for the Viana–Bray model [9] and
on Bethe lattices [11]. However, to the best of our knowledge, it has been simulated only
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once for the Sherrington–Kirkpatrick model [9], using a form of bond chaos which is slightly
different from that we consider here. In this paper we will show that the probability distribution
of the overlap, which is our main quantity of interest, has a relatively complicated finite size
scaling behaviour (see equation (68) below).

This paper is organized as follows. In section 2 we specify the model and method we will
be using and explain in section 3 how to obtain the probability distribution of the overlap for this
model. We then proceed with the replica calculation in section 4 where we explicitly calculate
this distribution above, at and below the critical temperature. We end with a conclusion in
section 5.

2. Model

We will compare two real replicas of a Sherrington–Kirkpatrick spin glass with Hamiltonian

Hε = − 1√
N

∑
i<j

Kij (ε)sisj , (1)

where si (i = 1, . . . , N) are N Ising spins and

Kij (ε) = 1√
1 + ε2

Jij +
ε√

1 + ε2
J ′

ij (2)

are Gaussian random variables of unit variance, composed of independent Gaussian random
variables Jij and J ′

ij , also of unit variance. The parameter ε is a measure of ‘distance’ between
the sets of bonds {Kij (0)} and {Kij (ε)}. If ε = 0, the bonds are equal; if ε = ∞, the bonds
are completely uncorrelated.

Our main question concerns the disorder averaged probability distribution of the spin–spin
overlap Pε(q) between the two replicas, the first with H0 and the other with Hε . Here q is
defined by

q = 1

N

∑
i

s
1,0
i s

2,ε
i , (3)

where s
r,x
i is the ith spin in replica r, which has Hamiltonian Hx .

We know that for temperature chaos (i.e. when comparing two replicas with identical
bonds but at different temperatures), even an infinitesimal temperature difference �T leads
to P�T (q) = δ(q) in the thermodynamic limit [4]. This means that equilibrium states in
the two replicas are totally uncorrelated. Since bond chaos is usually a stronger effect than
temperature chaos, we expect the same here, and we will show this explicitly below. More
interesting, however, and also more important, is the question of how Pε(q) scales towards
the δ function with system size N. This information is for instance needed for the calculation
of the sample-to-sample free energy fluctuations [1, 7].

3. Probability distribution of the overlap

In order to calculate Pε(q) we first try to formally calculate Pε,J (q), the nonaveraged
probability distribution to find the overlap q. Here and in the following, the subscript J

indicates a nonaveraged quantity. Given a realization of the disorder for the two replicas, we
can write a partition function Zε,J (q) for them, constrained to have the overlap q,

Zε,J (q) = Tr δ

(
q − 1

N

∑
i

s
1,0
i s

2,ε
i

)
exp

⎛
⎝β

∑
i<j

Kij (0)s
1,0
i s

1,0
j + β

∑
i<j

Kij (ε)s
2,ε
i s

2,ε
j

⎞
⎠ .

(4)
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This method of constraining two systems to have a given overlap was first suggested
in [15]. From this, one gets the free energy βFε,J (q) = −log Zε,J (q), and defining
Yε,J = ∫ 1

0 dqZε,J (q), the probability distribution of q is given by a Boltzmann factor,

Pε,J (q) = e−βFε,J (q)

Yε,J

= Zε,J (q)

Yε,J

. (5)

Of course, we cannot calculate Fε,J (q) for a given disorder but we can calculate its disorder
average Fε(q) = EFε,J (the disorder average is denoted by the symbol E. . .) in the
thermodynamic limit by replica methods. This will be done below. But first we continue
formally in order to assess the approximations we are going to make.

We split Fε,J (q) into three parts,

Fε,J (q) = Nfε(q) + �Fε(q) + �Fε,J (q). (6)

The first part, Nfε(q), is the extensive part of the average free energy. The second part,
�Fε(q), is the finite size correction to it. Finally, �Fε,J (q) is the fluctuation of the free
energy about its disorder average Fε(q), so E�Fε,J (q) = 0.

In order to calculate Pε(q) = EPε,J (q), we first look at Yε,J . It can be written as follows,

Yε,J =
∫ 1

0
dq e−βNfε(q)−β(�Fε(q)+�Fε,J (q))

=
∫ 1

0
dq e−βNfε(q)

(
1 +

∞∑
n=1

(−β)n

n!

∫ 1
0 dq e−βNfε(q)(�Fε(q) + �Fε,J (q))n∫ 1

0 dq e−βNfε(q)

)

= Y 0
ε

(
1 +

∞∑
n=1

(−β)n

n!
[(�Fε + �Fε,J )n]0

)
, (7)

where Y 0
ε := ∫ 1

0 dq e−βNfε(q) and [· · ·]0 is the average taken with the probability distribution

P 0
ε (q) = e−βNfε(q)

Y 0
ε

. (8)

We then have
1

Yε,J

= 1

Y 0
ε

∫ ∞

0
dx e−x(1+

∑∞
n=1

(−β)n

n! [(�Fε+�Fε,J )n]0) (9)

and

Pε(q) = P 0
ε (q)E

∫ ∞

0
dx e−x−x

∑∞
n=1

(−β)n

n! [(�Fε+�Fε,J )n]0−β(�Fε(q)+�Fε,J (q)) (10)

= P 0
ε (q)

(
1 − β(�Fε(q) − [�Fε]0)

− β2

2
[(�Fε(q) − [�Fε]0)

2]0 − β2

2
E[(�Fε,J (q) − [�Fε,J ]0)

2]0

+
β2

2
(�Fε(q) − [�Fε]0)

2 +
β2

2
E(�Fε,J (q) − [�Fε,J ]0)

2 + · · ·
)

. (11)

The last line follows from expanding the exponentials and sorting by powers of �Fε and
�Fε,J .

Equation (11) shows precisely what can be expected of the calculation which is to follow.
We will calculate the first term of this expression, P 0

ε (q). This is the same term one would

3
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have written from the start by following large deviation statistics principles. Anything beyond
this would require us to calculate the finite size corrections �Fε(q) and �Fε,J (q) which is
impossible due to the massless modes present in the spin glass phase. But our precise analysis
allows us to gauge the applicability of the large deviation statistics approximation: although
�Fε(q) and �Fε,J (q) are not necessarily small (they grow with some subdominant power of
N), they only appear in the combinations �Fε(q)− [�Fε]0 and �Fε,J (q)− [�Fε,J ]0. If these
differences are small, our results not only hold for ‘large’ deviations but also for ‘small’ ones.
While we have no proof for this, application of our results to the free energy fluctuations above
and at the critical temperature [1, 7] shows that it is at least true at those temperatures. As to the
low-temperature phase, we will see later that for ε = 0 and q less than the Edwards–Anderson
order parameter qEA, the corrections are of order 1 but small enough not to introduce any
qualitative changes, and we expect the same to hold for ε > 0.

4. Replica calculation

Temperature chaos in mean-field spin glasses has been treated in the literature [4, 16] and we
refer the reader to these papers for details. Repeating Rizzo’s calculation [16] (see also [17]
for the calculation at ε = 0) but for bond chaos rather than temperature chaos, one arrives at
the following expression for the disorder averaged, replicated, constrained partition function
EZn

ε,J (q)

EZn
ε,J (q) =

∫ (
n∏

α=1

dzα

) ⎛
⎝ 2n∏

α<β

dTαβ

⎞
⎠ exp

⎛
⎝2N

⎡
⎣τ

2

n∑
αβ

Q2
αβ +

τ ′

2

n∑
αβ

R2
αβ

+
w

6

⎛
⎝ n∑

αβγ

QαβQβγ Qγα + 3
n∑

αβγ

QαβRβγ Rγα

⎞
⎠ +

y

12

⎛
⎝ n∑

αβ

Q4
αβ +

n∑
αβ

R4
αβ

⎞
⎠

− q

n∑
α=1

zα +

√
1 + ε2

4

n∑
α=1

(
R2

αα − (Rαα − 2zα)2
)])

. (12)

Here, τ = 1
2 (1 − 1/β2), τ ′ = 1

2

(
1 −

√
1 + ε2/β2

)
and the 2n × 2n matrix T is given by

T =
(

Q R

R Q

)
(13)

and the n × n matrix Q is zero on the diagonal, while R, also of size n × n, is not. The latter
will therefore be split into a part on the diagonal pd1 and the rest on P. At this stage it is an
ansatz to make all entries on the diagonal of R equal to pd but this need not be done and one
could proceed without this assumption and justify it later.

Note that, in contrast to [16], we are using the truncated model here by keeping only those
fourth-order terms which are written in equation (12). This will make the calculations below
much easier.

The saddle point equations following from this expression can easily be derived and,
making a Parisi symmetry breaking ansatz for P and Q, one gets the following system of
equations:

0 = τq(x) +
y

3
q3(x) − w

2

∫ x

0
dz(q(x) − q(z))2 − w

2

∫ x

0
dz(p(x) − p(z))2

−w(p − pd)p(x) − wqq(x) (14)

4
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0 = τ ′p(x) +
y

3
p3(x) − w

∫ x

0
dz(p(x) − p(z))(q(x) − q(z))

−w(p − pd)q(x) − wqp(x) (15)

q = pd +
2y

3
p3

d − 2w

∫ 1

0
dz p(z)q(z). (16)

The variable q (without argument) in the last equation is the overlap the two real replicas are
forced to have. As usual, p and q denote the integrals over p(x) and q(x) from 0 to 1. The
free energy per spin may be expressed in terms of the solutions p(x), q(x) and pd of these
equations and is given by

βfε(q) = qpd − p2
d

2
− yp4

d

6
− q2

2(1 − 2τ ′)
+ τ

∫ 1

0
dz q2(z) +

y

6

∫ 1

0
dz q4(z)

− w

3

∫ 1

0
dz zq3(z) − w

∫ 1

0
dz q2(z)

∫ 1

z

dz′q(z′) + 2wpd

∫ 1

0
dz p(z)q(z)

+ τ ′
∫ 1

0
dz p2(z) +

y

6

∫ 1

0
dz p4(z) − w

∫ 1

0
dz p2(z)

∫ 1

z

dz′q(z′)

− 2w

∫ 1

0
dz p(z)q(z)

∫ 1

z

dz′p(z′) − w

∫ 1

0
dz zp2(z)q(z). (17)

It can be checked that this free energy gives back the saddle point equations (14)–(16) when
the derivatives with respect to p(x), q(x) and pd are taken.

4.1. Above the critical temperature

Above the critical temperature, τ < 0, the saddle point equations can be solved perturbatively
in the limit of small q. For q = 0, the exact solution is q(x) = p(x) = 0 and pd = 0.
For 0 < q � |τ | it is easy to see that q(x) = O(q2), p(x) = O(q2) and pd = q + O(q3).
Plugging this into the free energy, equation (17), yields

βfε(q) = q2

2

(
1 − β2

√
1 + ε2

)
+ O(q4). (18)

The probability distribution P 0
ε (q) is thus

P 0
ε (q) ∝ e−N(

q2

2 h(ε)+O(q4)) (19)

with h(ε) = 1 − β2√
1+ε2

.

4.2. At the critical temperature

At the critical temperature, τ = 0, we can first solve the saddle point equations in the limit
q � |τ ′|. Just like above the critical temperature, the solution is q(x) = O(q2), p(x) = O(q2)

and pd = q +O(q3), and the free energy is also given by equation (18) in this limit. Expanding
in powers of ε, we find

βfε(q) = q2

2
h(ε) = q2ε2

4
+ O(ε4) (q � ε2 � 1). (20)

We will also need the solution of the saddle point equations in a different limit, namely
ε2 � q � 1. To obtain this, it is convenient to rewrite the saddle point equations and the

5
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free energy in terms of the functions a(x) := q(x) + p(x) and b(x) := q(x) − p(x). A
straightforward calculation leads to

0 = (τ + wpd)a(x) − τ − τ ′

2
(a(x) − b(x)) +

y

12
(a3(x) + 3a(x)b2(x))

− w

2

∫ x

0
dz(a(x) − a(z))2 − waa(x) (21)

0 = (τ − wpd)b(x) +
τ − τ ′

2
(a(x) − b(x)) +

y

12
(b3(x) + 3b(x)a2(x))

− w

2

∫ x

0
dz(b(x) − b(z))2 − wbb(x) (22)

q = pd +
2y

3
p3

d − w

2

∫ 1

0
dz(a2(z) − b2(z)) (23)

and

βfε(q) = qpd − p2
d

2
− yp4

d

6
− q2

2(1 − 2τ ′)
+

τ

2

∫ 1

0
dz(a2(z) + b2(z))

− τ − τ ′

4

∫ 1

0
dz(a(z) − b(z))2 − w

6

∫ 1

0
dz z(a3(z) + b3(z))

− w

2

∫ 1

0
dz

∫ 1

z

dz′(a2(z)a(z′) + b2(z)b(z′))

+
y

48

∫ 1

0
dz(a4(z) + 6a2(z)b2(z) + b4(z)) +

wpd

2

∫ 1

0
dz(a2(z) − b2(z)). (24)

These saddle point equations can easily be solved for τ = τ ′ = 0, and the solution is

a(x) =

⎧⎪⎪⎨
⎪⎪⎩

2wx

y
x < x ′

2

2wx ′
2

y
x � x ′

2

(25)

b(x) = 0 (26)

q = pd +
2y

3
p3

d − 2w3

y2

(
x ′2

2 − 2

3
x ′3

2

)
. (27)

The breakpoint of a(x) is x ′
2 = 1 −

√
1 − ypd

w
. The value of pd has to be obtained by solving

equation (27) for pd .
When we want to find the free energy perturbatively in the limit 0 < |τ ′| � q � 1, we

note that �a(x) and �b(x) (the correction terms for nonzero τ ′) are both of order τ ′. Since
these are the corrections to the saddle point solution found at τ ′ = 0, they only contribute to
the free energy to order τ ′2 and can therefore be neglected as long as we are only interested in
the free energy to order τ ′. Plugging the functions a(x) and b(x) just found into equation (24)
yields

βfε(q) = w

6
q3 − 3

4
τ ′q2 + O(τ ′2) + O(q4)

= w

6
q3 +

3ε2

16
q2 + O(ε4, q4) (ε2 � q � 1). (28)

6



J. Phys. A: Math. Theor. 41 (2008) 205005 T Aspelmeier

We note that for ε � N−1/6 the exponent Nβfε(q) of the probability distribution
P 0

ε (q) ∼ e−Nβfε(q) is dominated by Nwq3/6 from equation (28), while for N−1/6 � ε � 1 it

is dominated by N
q2

2 h(ε) from equation (20). Therefore the probability distribution is

P 0
ε (q) ∝

{
e−Nwq3/6 ε � N−1/6

e−Nq2h(ε)/2 N−1/6 � ε.
(29)

4.3. Below the critical temperature

4.3.1. Some exact solutions of the saddle point equations. Equations (14)–(16) cannot be
solved for general q and ε (or rather τ ′ which contains the only reference to ε). They can
however be solved exactly for ε = 0 and q = 0 and perturbatively in various limits.

The solution for q = 0 is simply

p1(x) = 0 (30)

q1(x) =

⎧⎪⎨
⎪⎩

wx

2y
x < x2

wx2

2y
x � x2

(31)

pd = 0 (32)

where x2 = 1 −
√

1 − 4yτ

w2 . That this is a solution can easily be checked since equation (16) is
clearly satisfied, equation (15) is also satisfied by pd = 0 and p(x) = 0, irrespective of q(x),
and equation (14) in this case reduces to the normal Parisi equation the solution of which is
well known and given in equation (31).

The solution for τ = τ ′ and q < qEA, where qEA is the Edwards–Anderson order
parameter, has been found by Rizzo [16] and is given by

p2(x) =

⎧⎪⎨
⎪⎩

wx

y
x < x1

wx1

y
x � x1

(33)

q2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wx

y
x < x1

wx1

y
x1 � x < 2x1

wx

2y
2x1 � x < x2

wx2

2y
x2 � x � 1

(34)

pd = q

1 − 2τ
(35)

with x1 = ypd

w
. This solution however only exists if 2x1 < x2, which is the case when q < qEA.

In the limit q → 0 it goes to the solution found above for q = 0. As shown by Rizzo, the free
energy βf0 of this solution (for any q where this solution exists) is precisely equal to that of
two unconstrained systems; we may therefore use βf0 as reference energy.

7
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For τ = τ ′ and q > qEA, another solution takes over [17]. It is given by

p3(x) = q3(x) =

⎧⎪⎨
⎪⎩

wx

y
x < x3

wx3

y
x � x3

(36)

q = pd +
2y

3
p3

d − 2w3

y2

(
x2

3 − 2

3
x3

3

)
. (37)

The breakpoint is x3 = 1 −
√

1 − yτ+wypd

w2 , and pd can be obtained by solving equation (37)
for pd . Since the details can be found in [17], we merely quote here that the excess free energy
of this solution is

βf − βf0 = c0(q − qEA)3 (38)

with some positive constant c0.

4.3.2. Perturbative solution in the limit ε → ∞. The first limiting case to consider is ε → ∞
or, equivalently, τ ′ → −∞. In this case, dividing equation (15) by τ ′ yields to leading order

p(x) = wpdq(x)

−τ ′ + O(1/τ ′2). (39)

Inserting this into equation (14) gives, again to leading order,

0 =
(

τ +
w2p2

d

−τ ′

)
q(x) − y

3
q3(x) − w

2

∫ 1

0
dz(q(x) − q(z))2 − wqq(x), (40)

i.e. precisely the Parisi equation but for a slightly lower temperature τ + w2p2
d

−τ ′ .
Let us look at the free energy of this solution in the limit τ ′ = −∞. From equation (16)

we get qpd = p2
d + 2yp4

d

/
3 and the free energy difference βf∞(q) − βf0 is

βf∞(q) − βf0 = p2
d

2
+

yp4
d

2
= q2

2
+ O(q4). (41)

This means that the probability density P 0
∞(q) is proportional to exp(−N(q2/2 + O(q4))),

from which [q2]0 can be evaluated and is given by [q2]0 = 1
N

. This is a useful result to check
whether the method works since it is easy to convince oneself that this is indeed true for two
replicas with completely uncorrelated couplings:

E〈q2〉 = E

〈(
1

N

∑
i

si ti

)2〉
= E

〈
2

N2

⎛
⎝∑

i<j

sisj ti tj +
N

2

⎞
⎠〉

= 1

N
, (42)

in agreement with the replica result.

4.3.3. Perturbative solution for ε2 � q � 1. We now turn to the opposite limit, ε → 0
or τ ′ → τ . We first consider the case ε2 � q � 1. In order to solve the saddle point
equations in this limit, it is again convenient to consider the version in terms of a(x) and b(x),
equations (21)–(23). The solution for τ ′ = τ , i.e. �τ = τ − τ ′ = 0, and arbitrary q (small
enough such that the solution exists), taken from equations (33)–(35), is

pd = q

1 − 2τ
(43)

8
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a(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2wx

y
x < x1

2wx1

y
x1 � x < 2x1

w(x + 2x1)

2y
2x1 � x < x2

w(x2 + 2x1)

2y
x2 � x � 1

(44)

b(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 x < 2x1

w(x − 2x1)

2y
2x1 � x < x2

w(x2 − 2x1)

2y
x2 � x � 1.

(45)

Surprisingly, a perturbative expansion of the saddle point equations for small �τ shows that
the leading order correction to this solution is of order

√
�τ . It is straightforward to show that

it is given by

�a(x) = 0 (46)

�b(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x < x1√
2�τ

3y
x1 < x < 2x1

0 2x1 < x � 1.

(47)

Inserting this into the free energy difference leads to

βfε(q) − βf0 = yp3
d

3w
�τ = yε2q3

12wβ2(1 − 2τ)3
=: c1ε

2q3 (ε2 � q � 1), (48)

defining the constant c1.

4.3.4. Perturbative solution for q � ε2 � 1. In this limit we can use the solution for q = 0
from equations (30)–(32) as reference solution and construct a perturbative solution for small
q (or pd ) from it, i.e. we set p(x) = p1(x) + �p(x) = �p(x) and q(x) = q1(x) + �q(x) and
write the lowest order in pd from equation (15):

0 = τ ′�p(x) − w

∫ x

0
dz(�p(x) − �p(z))(q1(x) − q1(z))

−w(�p − pd)q1(x) − wq1�p(x). (49)

As we can see, �q(x) does not appear in this equation at all, and since p(x) only appears
quadratically or in combination with pd in equation (14), we conclude that �q(x) must be in
fact of higher order

(
O

(
p2

d

))
such that we may set it equal to zero.

Equation (49) can be solved in the following way. First note that q1 = τ/w such that

0 = −�τ�p(x) − w

∫ x

0
dz(�p(x) − �p(z))(q1(x) − q1(z)) − w(�p − pd)q1(x). (50)

Differentiating once with respect to x yields

0 = −�τ�p′(x) − wq ′
1(x)

∫ x

0
dz(�p(x) − �p(z))

−w�p′(x)

∫ x

0
dz(q1(x) − q1(z)) − w(�p − pd)q

′
1(x). (51)

9



J. Phys. A: Math. Theor. 41 (2008) 205005 T Aspelmeier

We conclude that �p′(x) = 0 whenever q ′
1(x) = 0. When q ′

1(x) 
= 0, differentiating
equation (51) once more gives (noting that q ′

1(x) = 0)

0 = −�τ�p′′(x) − 2wxq ′
1(x)�p′(x) − w�p′′(x)

∫ x

0
dz(q1(x) − q1(z)) (52)

= −
(

�τ +
w2x2

4y

)
�p′′(x) − w2x

y
�p′(x). (53)

This differential equation can easily be solved and one gets

�p′(x) = C ′
(

�τ +
w2x2

4y

)−2

(54)

with an as yet undetermined constant C ′. Integrating once with respect to x yields

�p(x) = C ′√y

w�τ 3/2
f

(
wx

2
√

y�τ

)
=: Cf

(
wx

2
√

y�τ

)
, (55)

where

f (z) = z

1 + z2
+ arctan z. (56)

This is true for x < x2 while for x > x2,�p(x) stays constant. We can now calculate �p,

�p = C

∫ x2

0
dxf

(
wx

2
√

y�τ

)
+ C(1 − x2)f

(
wx2

2
√

y�τ

)
(57)

= C arctan(wx2/2
√

y�τ) + C(1 − x2)
wx2/2

√
y�τ

1 + w2x2
2

/
4y�τ

. (58)

The constant C can be determined from equation (51) by taking the limit x → 0. In this
limit the equation reads

�τ�p′(0) = w(pd − �p)q ′
1(0) (59)

such that

Cw
√

�τ√
y

= w2

2y
pd − w2

2y
�p (60)

which yields upon expanding in powers of
√

�τ ,

C = 2

π
pd +

4

π2
pd

(
2

3
− x2

) (
2
√

y�τ

wx2

)3

+ O(�τ 5/2). (61)

With this value of C,p(x) = �p(x) together with q(x) = q1(x) is the correct solution of
equations (14) and (15) for small �τ up to order pd .

What of the free energy of this solution? In order to calculate this, we eliminate q from
equation (17) using equation (16) and subtract βf0 to get

βfε(q) − βf0 = p2
d

2
+

yp4
d

2
− 1

2(1 − 2τ ′)

(
pd +

2yp3
d

3
− 2w

∫ 1

0
dz p(z)q1(z)

)2

−�τ

∫ 1

0
dz p2(z) +

y

6

∫ 1

0
dz p4(z) − w

∫ 1

0
dz p2(z)

∫ z

0
dz′(q1(z) − q1(z

′))

− 2w

∫ 1

0
dz p(z)q1(z)

∫ 1

z

dz′p(z′). (62)

10
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We can calculate the integrals appearing in this equation and obtain∫ 1

0
dz p(z)q1(z) = τpd

w
− �τpd

w
+

4
√

y�τ 3/2pd

πw2
+ O(�τ 5/2) (63)

∫ 1

0
dz p2(z) = p2

d − 6
√

y

πw
p2

d

√
�τ + O(�τ 3/2) (64)

and∫ 1

0
dz p(z)

(
p(z)

∫ z

0
dz′(q1(z) − q1(z

′)) + 2q1(z)

∫ 1

z

dz′p(z′)
)

= τ

w
p2

d − 2
�τ

w
p2

d +
10

√
y�τ 3/2

πw2
p2

d + O(�τ 5/2). (65)

Assembling these results, the terms of order �τ cancel and the free energy difference is

βfε(q) − βf0 = 4
√

y

πw
p2

d�τ 3/2 + O(�τ 3) = c2ε
3q2 + O(ε5) with

c2 = 4
√

y

πw

1

(1 − 2τ)2

1

8β3
. (66)

4.3.5. Perturbative solution for q � min(1, ε2). In the preceding subsection we have
calculated the free energy for q � ε � 1. The condition ε � 1 is an unnecessary restriction,
however, and one can in principle carry out the same calculation as above without expanding
for small ε, as long as q � min(1, ε2). The result is

βfε(q) − βf0 = f (ε)q2 + O(q3), (67)

where the function f (ε) is monotonic and has the properties f (ε) = c2ε
3 + O(ε5) for ε → 0

and f (ε) → 1
2 for ε → ∞. The latter follows from the solution for τ ′ → −∞ which we

found previously. As we would not need any more detailed information about f (ε), we will
not carry out this tedious calculation in detail here.

4.3.6. Probability distribution. As before, we want to calculate the probability distribution
P 0

ε (q) ∼ e−Nβ(fε(q)−f0). We observe that the admissible range of ε (the interval from 0 to ∞)
divides into four parts. For ε � N−1/2, both equations (48) and (66) produce a negligible
exponent Nβ(fε(q) − f0) for all q ∈ [0, qEA]. The probability distribution P 0

ε (q) is thus a
constant in that interval, with an exponentially suppressed tail for q > qEA from equation (38).
In the range N−1/2 � ε � N−1/5 the exponent Nβ(fε(q) − f0) is negligible for q � ε2

when equation (66) prevails. It only becomes noticeable when q � N−2/5 � ε2 such that we
can approximate it by equation (48). For N−1/5 � ε � ε0 with some arbitrary small and fixed
ε0 independent of N, the exponent is dominated by equation (66). Finally, for ε0 < ε we can
use equation (67).

Combined, we can write

P 0
ε (q) ∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ̂ (q − qEA) ε � N−1/2

e−Nc1ε
2q3

N−1/2 � ε � N−1/5

e−Nc2ε
3q2

N−1/5 � ε � ε0

e−Nf (ε)q2
ε0 < ε,

(68)

where the function θ̂ (x) = 1 for x < 0 and θ̂ (x) = e−Nc0x
3

for x > 0. In principle, the latter
two regimes could be combined to P 0

ε (q) ∝ e−Nf (ε)q2
for N−1/5 � ε but splitting them makes

the dependence on ε more explicit.

11
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A note is in order about the probability distribution at ε = 0. Clearly, the result in
equation (68) does not coincide with the known distribution from the Parisi solution [18–20],
in particular the δ peak at qEA is missing and in the range 0 � q < qEA the probability
distribution is flat. The latter is not only an artefact of using the truncated model (for which
the distribution would indeed be flat) but was already derived in [16, 17] for the full model.
Both the flatness and the missing δ peak originate from neglecting the finite size corrections in
equation (11). We conclude that these corrections are of order 1 for q < qEA (but do not change
the probability distribution qualitatively, i.e. do not introduce gaps or zeros in the distribution)
and conspire to form the δ peak for large N at q = qEA. When ε > N−1/2 we do not expect
any δ peaks since the equilibrium states in the two replicas start to differ substantially, and in
the light of what we saw at ε = 0 we expect the finite size corrections to be similarly good
natured. Thus the results we have presented here for the probability distribution should be
correct up to prefactors which might vary for the full model. This is further corroborated by a
comparison of our prediction for [q2]0 with the data shown in [9]. According to equation (68),
[q2]0 ∼ (Nε2)−2/3 for N−1/2 � ε � N−1/5, and this is precisely what is shown in figure 2 of
[9] (the slope is not explicitly given there but graphically, −2/3 seems to fit very well).

5. Conclusion

We have shown that bond chaos exists in the Sherrington–Kirkpatrick model by calculating
the probability distribution of the overlap q between two copies of a system, one of which has
randomly perturbed bonds with respect to the other. The finite size scaling of this distribution
has been calculated above, at and below the critical temperature. In the low-temperature phase
four different regimes have been identified. For bond distances ε � N−1/2 the distribution
has a variance of order 1, i.e. the equilibrium states in the two copies are still very similar. For
N−1/2 � ε � N−1/5, the distribution is proportional to e−Nc1ε

2q3
, i.e. already very narrow, the

width scaling as ξ
−2/3
1 with the scaling variable ξ1 = √

Nε. This coincides with the scaling
behaviour found in [9, 11]. For N−1/5 � ε � 1, however, the scaling variable becomes
ξ2 = N1/3ε and the distribution becomes Gaussian with width proportional to ξ

−3/2
2 . For all

other values of ε, finally, the distribution remains Gaussian, and its width goes as N−1/2.
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